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Abstract 
The elastic behaviour of porous materials and models to account for the 
behaviour are reviewed briefly. Previously established data for the full set 
of elastic properties, gathered under low strain and high strain 
conditions, is used to show that the pores increase in volume by amounts 
that become noticeable only when the porosity is in the continuously 
connected regime. Although the overall volume increases are small, they 
are significant in relation to volumes of sinter necks, where stresses are 
localised and can exceed the matrix yield stress.  
Keywords: bulk modulus, shear modulus, Young’s modulus, Poisson’s 
ratio, Lamé constants, volume changes at small strains 

INTRODUCTION 
One of the advantages of thinking about the elastic properties of PM materials is 

that the set of properties is said to be independent of microstructure. Furthermore, the 
behaviour is reversible, and reversible behaviour is generally more tractable to theory than 
more complicated properties like strength, ductility and toughness. 

OBSERVATIONS 
Over the years there have been quite a number of experimental measurements of 

Young’s modulus of PM materials and ceramics as functions of their porosity [1-19]. 
Figure 1 shows some examples. The general reduction of stiffness as the porosity of the 
material increases is by more than can be accounted for simply by a law of mixtures; some 
35 % of the modulus is lost by the time the porosity reaches 10 %. 
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Fig.1. Measured, variations of Young’s modulus with porosity. [Various materials & authors]. 

                                                           
John Robert Moon, School of Mechanical, Materials & Manufacturing Engineering, University of Nottingham, 
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EMPIRICAL CURVE FITTING 
To go with the experimental measurements, empirical equations derived by curve 

fitting have proliferated. These generally take one of two forms; 
MR = [1 – VP]n       (1) 
MR = exp[-bVP]       (2) 

Where, MR is the relative value of the property [that measured for a porous sample/that for 
the fully dense matrix material], VP is the volume fraction of the material occupied by 
pores, n and b are ‘constants’ derived empirically. 

Examples of such curves are included as the heavy lines in fig.1; these were 
calculated using the same parameters for each, n = b = 4. Note that there is little difference 
between the two empirical ‘fits’; expanding the two expressions as power series will show 
the reason why. 

THEORETICAL CALCULATIONS 
It is recognised that the stress and strain fields within the microstructures are non-

uniform. Stress concentrations associated with pores can easily multiply stresses by factors 
of 10 or even 100, depending on the pore shape [20]. Linear elasticity theory has been used 
to derive analytical expressions for the overall elastic behaviour of materials containing 
pores of various shapes and degrees of inter-connectedness or dis-connectedness [21–33]. 
Only simple model systems could be analysed and mathematical approximations were 
necessary. The outcomes are equations of more complex natures, but the general shape of 
the variations of property with porosity are similar to the empirical relationships. 

Computer modelling of idealised pore shapes and distributions, followed by finite 
element analysis has also been tried [34 -40]. These have, without exception, been confined 
to two dimensional models, and suffer from that. Nevertheless, they have given some 
insight into just where it is that most of the deformation occurs and emphasise clearly the 
paramount importance of pore shapes. 
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Fig.2. Calculated variations of Young’s modulus with porosity. The heavy lines 

correspond to ER = [1 – VP] 4 and ER = exp[-4VP]. 

Figure 2 shows some of the relationships that have been ‘calculated’; no attempt is 
made to identify each curve in the interest of avoiding clutter in the diagram. The heavy 
lines are copies of those in Figure 1. The calculations give rise to a great variety of 
predictions. This is not surprising, because the analytical curves are essentially functions of 
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the models they set out to analyse, and we can get almost any result by changing the model. 
The empirical curves are rather better, because at least they are based on experimental data. 
But, these are derived from materials with differing processing histories and will have 
differing pores sizes, shapes and distributions and consequently differing ‘constants’. 

One conclusion from all this is that it is not just the average porosity that matters. 
Maybe the sizes of the pores are significant, but it is more likely that the pore shapes and 
distributions are important. Furthermore, we know that the relative porosity is roughly less 
than VP ~ 0.1, the pores exist as essentially isolated features in the microstructure, but at 
lower densities the microstructure is more akin to two interconnected skeletons of matrix 
and pores intertwined with one another. So, should we expect to be able to model the 
behaviour over the whole porosity range, or do we need to think separately about the 
regimes of inter-connected and dis-connected porosity? 

A further complication that becomes more noticeable at high densities is that 
simple porosity measurements do not tell us anything about the strength of the bonding 
between particles. A thought experiment tells us that a mass of powder particles compacted 
so that all space between them was used up would be apparently fully dense, even though 
there was almost no bonding between particles. 

Another factor that needs to be taken into account is that the pore shapes are likely 
to change as the measurements are made. Elastic properties can, of course, be measured in 
lots of ways. Direct straining in tensile testing machines would normally be done using 
average strains up to the yield strain of the material. Bend tests involve stresses ranging 
from zero at the neutral axis up to the yield stress at the surface fibres – in tension on one 
side and compression on the other. We have seen already that very high local stresses are 
possible even when the average applied stress is small. Local yielding around pores is 
possible at stresses of only 1/10 or 1/100 of the yield stress of the material. So, are the 
elastic properties dependent on the strains [or stresses] used to measure them? 

MEASUREMENTS AT LOW AND HIGH STRAINS 
Measurements based on the speeds of sound and ultra-sound in the material 

involve indeterminate but very small strains [ε < 0.005 %]. They are based on the 
relationships, 

E = vS
2ρ        (3) 

[1 – ν]/[(1 + ν)(1 – 2ν)] = [vUS/vS]2     (4) 
where, vS and vUS are the velocities of sound and ultra-sound in the material, ρ is the 
measured density, E is Young’s modulus and ν is Poisson’s ratio. Having established ν and 
E, the other elastic properties are easily deduced [41]. 

Figure 3 shows results of such measurements, together with some for the same 
materials measured using strain gauge rosettes on tension test-pieces, strained to 0.35x10-3 
(referred to from now on as high strain, [19]). 

Replotting the data as relative values of properties and fitting exponential curves 
to the data gives the parameters shown in Table 1. 

Tab.1. Values of b in the expression, MR = exp[-bVP]. 

 ν E G K λ 
Low strain 0.5 4.2 4.1 4.4 5.1 
High strain 1.3 4.6 4.3 5.6 6.8 
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Fig.3. Elastic properties of Fe – 0.3C derived from measurements of the speeds of sound and 

ultrasound, and from strain gauge rosettes on tension test-pieces strained to 0.35x10-3 
[ν Poisson’s ratio; E Young’s modulus; G Shear modulus; K Bulk modulus; l Lamé constant]. 
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At all porosities, values of Young’s modulus and shear modulus at the two strain 
levels are within experimental errors of one another, but Poisson’s ratio and the bulk 
modulus tend to be slightly higher at low strains than at high strains, especially when the 
porosity is greater. As the material stretches under a tensile load, lateral strain is less at low 
strains and the volume of the material must increase by less than at high strains. A measure 
of the rate of volume change with applied uniaxial tension stress is the Lamé constant,  λ = 
K – 2G/3. It can be shown that,  

Δ/σx = ν/(λ[1+ν])       (5) 
In this, Δ = (V – V0)/V0 where V is the volume of the material under stress when subjected 
to a uniaxial tension of σx and V0 is its original, unstrained volume. 
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Fig.4. Rates of change of volume with uniaxial stress. Note on units: a value of 

106Δ/σx/MPa = 10 means that for every increase of tension stress by 100 MPa, the volume 
increases by about 0.1 %. 

Figure 4 shows the calculated rates of volume change brought about by uniaxial 
tension and the differences between the changes up to low and high strains. It shows clearly 
that there is little difference in the rates of volume change between low and high strain 
when the volume fraction of pores is less than about 0.1. On the other hand, at higher 
porosities there is a significantly larger rate of volume increase on going to larger strains. It 
is noticeable that the change in behaviour coincides with the well known changes from dis-
connected to continuous porosity at about the same volume fraction of pores. 

The question now is where do the volume changes come from? Of course, a fully 
dense matrix will change volume on being strained elastically anyway. But the changes 
here are extra to that. Figure 5 shows the data with the expected matrix changes subtracted. 

This re-emphasises the point that until the porosity starts to become dis-connected, 
the material as a whole behaves in close approximation to the matrix material. But when the 
porosity is disconnected, the pore volumes increase at rates that become larger at higher 
strains. What is more, the volume increase must be by elongation of the pores in the 
direction of the tension stress rather than by an isotropic expansion. 
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Fig.5. Rates of volume change with applied tension stress with the expected changes due to 

the matrix material subtracted. [Units of the volume chage axix are the same as in fig.4]. 

The volume changes are small. For example, if we have an applied tension stress 
of 100 MPa, the most extreme data point in Figure 5 corresponds to ΔV/V ~ 5x10-3. In the 
inter-connected porosity regime, the fraction of the total envelope of the material occupied 
by inter-particle necks, VN/VT is [43, 44] 

VN/VT ~ 10[x/a]4       (6) 
where x/a is the ratio of sinter neck radius to the particle radius. So, 

ΔV/VT = [ΔV/VN] [VN/VT] ~ 10[x/a]4ΔV/VN    (7) 
and if ΔV/V ~ 5x10-3, [x/a]4ΔV/VN ~ 5x10-4.  

Tab.2. Values of ΔV/VN for various sizes of sinter neck, assuming an applied tension stress 
of ~ 100 MPa. 

x/a 0.5 0.4 0.3 0.2 
ΔV/VN 0.008 0.02 0.06 0.31 

 
To interpret Table 2, we must remember that ΔV/VN represents the total change in 

pore volume in the material as a fraction of the volume occupied by sinter necks where the 
material strain is localised. When the porosity is less and the sinter necks larger, the 
increase in pore volume is less than by 1 % of the neck volume. But, the increase in pore 
volume can be as much as 30 % of the neck volume when the necks are small. Localised 
plastic straining of the necks under the action of enhanced local stresses, which can exceed 
the matrix yield stress even when the average applied stress is quite small [44]. Extension 
of the sinter necks in the loading direction means that the pores are also extended in the 
same direction. 

CONCLUSIONS 
Small strains, which would give uniform elastic behaviour in fully dense materials, 

bring about changes in pore volumes in porous materials. The changes are small in relation 
to the overall volume of the containing envelope of the material, but can be large in relation 
to the volumes of sinter necks where the local stresses can bring about local plastic 
deformation.  
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