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THE DETERMINATION OF FRACTURE STRENGTH FROM 
ULTIMATE TENSILE AND TRANSVERSE RUPTURE STRESSES 

A.S. Wronski, A.Cias 

Abstract 
It is well-recognized that the value of transverse rupture strength, TRS, 
can exceed that of ultimate tensile strength, UTS, of the same PM 
material, identically processed, by a factor up to ~2, although both these 
parameters appear relate to the fracture stress in tension by the same 
mechanism. Except for completely brittle materials failing after only 
elastic deformation, these parameters are not true fracture stresses and 
the plasticity correction for simple tension from UTS to the true tensile 
fracture strength, σ[T]max, is well-established. To take account of 
plasticity in bending, the Euler-Bernouilli analysis is extended for linear 
work hardening and the relationship between UTS and the true maximum 
stress in bending, derived. Generally stillσ[B]max > σ[T]max. Taking note 
of the stress distribution in a bend specimen being different to the 
uniformly stressed tensile specimen, Weibull statistical approach is used 
to calculate normalised values for the maximum tensile stress in bending 
in a specimen of the same size and shape. ISO tensile specimens were 
tested in simple bending as well as tension and the normalised maximum 
bend stress was found to correspond very closely to the true tensile 
fracture stress. 
Keywords: true fracture strength, ultimate tensile strength, transverse 
rupture strength, Weibull statistics 

INTRODUCTION 
Standards exist for the determination of yield and fracture strengths of sintered 

materials in tension, e.g. ISO 2740, and bending, e.g. ASTM B528-76. When account is 
taken of the non-linear nature of the load-elongation curves of sintered porous materials and 
the sensitivity of the measuring equipment, a reasonable correspondence between offset 
“yield” strengths determined in tension and bending exists, especially if extensometric 
techniques are used. No such claim can be made for specimens exhibiting, even limited, 
plasticity between conventionally determined stresses for failure in tension: [ultimate] 
tensile strength, UTS, and in bending: transverse rupture strength, TRS. For a material of 
identical composition, identically processed, the latter are always higher, typically by a 
factor 1.5-2.0. As an example, for 3% Mn-0.8% C steel sinterhardened from 1120°C, the 
value of UTS was 475 MPa, but TRS evaluated to 736 MPa in four- and 1066 MPa in 
three-point bending [1]. 

It should be emphasised that both UTS and TRS are not true stresses, but easily 
determined parameters - useful for quality control and qualitative comparisons. For the case 
of tension, for failure before the point of plastic instability is reached, at plastic strain of 
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εmax, the relation between the nominal stress, UTS, and true stress, σ[T]max, is well-
established: 

σ[T]max =UTS (1 + εmax)      (1) 
 
For simple, three-point, bending, the conventionally used ”Strength of Materials” 

relation: 
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where l is the test span in three-point bending of a specimen of width b and depth t, derives 
from the fundamental solid mechanics beam relationship: 
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for linear elastic deformation to a radius, R, by a force, F applied at mid- span, l. M is the 
bending moment, Fl/4, σ, the stress at mid-span at y from the neutral axis and σmax, the 
stress in the outer fibre at mid-span, t/2 from the neutral axis. For a rectangular beam of 
depth, t, width, b, with the second moment of area, M, of bt3/l2, for linear elastic 
deformation relation (2) thus follows: 
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Accordingly it can be used for basis of comparison with tensile fracture strength 

only for brittle specimens, as is the case for ceramics, where the problem has been treated 
in depth [2]. There is no simple relation between TRS, so evaluated, and the true maximum 
tensile stress in bending σ[B]max for ductile specimens [3] and this problem will be 
addressed.  

The basis of comparison of the values of true stresses σ[B]max and σ[T]max for 
specimens failing by the same mechanism from inherent flaws will be the distribution of 
stresses in a bend specimen and the distribution of flaw sizes, assumed the same in both 
types of specimen [3]. The analysis for specimens of different size and geometries includes 
a size effect [4]; this communication will deal with identical specimens tested in tension 
and bending. This further ensures identical sintered material for both tests, difficult to 
completely attain with different dies. 

CALCULATION OF THE MAXIMUM TENSILE STRESSES IN BENDING 
In the following analysis [3] it is assumed that transverse sections which are plane 

before bending remain plane after elastic-plastic bending (Bernouilli-Euler) and that the 
stress-strain relation for the tested material, as illustrated in Fig.1, is: 

σ σ ε ε ε ε= + − = +Υ Υ ΥwE E wE P( )     (4) 
i.e. exhibiting  linear work-hardening rate, wE, where E is Young’s modulus and σY  and εY 
are the yield stress and strain. 
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Fig.1. (after Nadai [5]). Idealised stress-strain curve for steel - assuming linear work-

hardening and failure before the point of plastic instability is reached. 

The standard elastic beam theory moment, M, formula is:  
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where σ is the stress and y the depth direction, measurements being taken from the neutral 
axis. It needs to be modified for partial yielding, to the depth h/2 from the neutral axis, i.e. 
for deformation for 0 < y <h/2 being elastic and for h/2 < y < t/2 elastic-plastic (Fig.2) to: 
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Fig.2. (after Nadai [5]). Distribution of bending stresses in a beam of rectangular cross-

section, where P1, P2, P3 represent resultant values of force produced by the relevant 
portions of the stress diagram depicted in Fig.1. 
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If εmax is the outer fibre strain at fracture, as: ε= 2εmax y/t, i.e. εmax =
y

t
2
ε

 
and 

dy td
=

ε
ε2 max  

 therefore: 

[ ]M bE t d bE w t t d
h

h

t

=
⎡

⎣
⎢

⎤

⎦
⎥ + + −

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥∫ ∫2

2
2

2 20

2

2

2

ε
ε

ε ε ε ε ε
ε ε

ε
max max max

( )Υ Υ

 

(7) 

i.e. ( )[ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∫ ∫ +−+⎥
⎦

⎤
⎢
⎣

⎡
= Υ

2

0

2

2/

22
2

max
1

2
2

h t

h
dwwdEtbM εεεεεε

ε
  

(8) 

which evaluates to: 
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As the bending moment, M Fl
=

4
, equals also to bt TRS2

6
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If w, E, σY, εY , and TRS are known,  εmax can be evaluated, e.g. by method of successive 
approximations and hence:  

σ[B]max = E ε Y + w E[ εmax - ε Y] =   E ε Y + w E εP                                         (3a) 
 
In a set of experiments [1] Fe-3 Mn-0.8C ISO 2740 dogbone specimens were 

tested in tension (Table 1) and also in bending (Table 2), satisfying the conditions of the 
same specimen shape and size. Samples were sintered in semi-closed containers at1120°C 
in pure technical hydrogen or at 1250°C in 95% nitrogen-5% hydrogen mixture, in each 
case for 1 hour with inlet dew points better than -40°C, rapidly cooled and tempered at 
200°C for 1h. E was evaluated as 115 GPa and w as 0.20.  Weibull 2-parameter statistical 
analyses [6] were carried out on the data and recorded in Tables 2 and 3 are the Weibull 
characteristic stress, σ0, and the modulus, m [1].  

σ0 is the stress at which the survival probability is 1/e and m is the Weibull 
modulus quantifying the scatter; the lower m, the greater the scatter. Weibull plots of 
σ[T]max  and σ[B]max  are presented in Figs. 3 and 4 for specimens sinter-hardened from 
1120°C and 1250°C, respectively. It is evident, as also documented in Table 3, that the 
Weibull moduli for specimens identically processed are equal within the experimental 
error, indicating the same type of failure mechanism in both modes of stressing. It is 
equally evident that there are substantial differences in the magnitudes of fracture stresses 
determined in tension and bending. It is therefore necessary to analyse statistically the data, 
taking note of stress distribution in the bend specimen. The procedure for evaluating 
σ[T]max and σ[B]max will now be demonstrated.  
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Tab.1. Tensile results for εmax and σ[T]max = UTS (1 + εmax), σ0 corresponds to a survival 
probability of 1/e. 

Processing: 1120°C/100% H2 Processing: 1250°C/ 95% N2-5% H2
σ[T]max MPa εmax % σ[T]max MPa εmax % 

520 
565 
615 
630 
630 
630 
650 
670 
680 
725 

1.38 
1.40 
1.79 
1.95 
1.98 
1.97 
1.98 
2.05 
2.07 
2.35 

590 
660 
690 
700 
710 
715 
755 
790 
820 
850 

1.37 
1.54 
1.57 
1.58 
1.58 
1.60 
1.82 
1.85 
1.94 
2.17 

Mean value: 631 MPa  Mean value: 728 MPa  
σ0 = 658 MPa  σ0 = 762 MPa  

mT = 11.6 ± 2.6  mT = 10.1 ± 2.3  

Tab.2. Estimates of true stresses, σ[B]max, in beams undergoing elastic-plastic bending.  

Processing:1120°C/100% H2 Processing: 1250°C/ 95% N2-5% H2
TRS 
MPa 

εmax
% 

εP  
% 

σ[B]max 
MPa 

TRS 
MPa 

εmax
% 

εP

 % 
σ[B]max 

MPa 
995 2.53 2.23 858 1194 3.31 3.01 1058 

1055 2.79 2.49 919 1204 3.40 3.10 1067 
1065 2.84 2.54 927 1244 3.44 3.14 1106 
1124 3.04 2.74 988 1303 3.87 3.57 1166 
1124 3.09 2.79 988 1373 4.17 3.87 1235 
1134 3.14 2.84 998 1403 4.30 4.00 1265 
1144 3.18 2.88 1007 1413 4.35 4.05 1276 
1154 3.22 2.92 1017 1413 4.35 4.05 1276 
1204 3.44 3.14 1067 1413 4.35 4.05 1276 
1224 3.53 3.23 1087 1433 4.43 4.13 1294 
1234 3.57 3.27 1097 1473 4.61 4.31 1336 
1234 3.57 3.27 1094 1473 4.61 4.31 1336 
1234 3.57 3.27 1094 1522 4.82 4.52 1384 
1234 3.57 3.27 1094 1542 4.91 4.61 1405 
1244 3.61 3.31 1107 1552 4.95 4.65 1414 
1264 3.70 3.40 1127 1572 5.04 4.74 1434 
1293 3.83 3.53 1155 1592 5.12 4.82 1454 
1323 3.96 3.66 1185 1632 5.30 5.00 1495 
1413 4.35 4.05 1276     
1493 4.69 4.39 1355     
1209 Mean value 1072 1431 Mean value 1293 
1223 σ0  MPa 1123 1495 σ0  MPa 1352 

11.6±1.8 Weibull modulus, mBB 10.3±1.6 12.2±2.0 Weibull modulus, mBB 11.0±1.8 
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Tab.3. Weibull moduli mB and mB T for “dogbone” ISO2740 Fe-3% Mn-0.6-0.7% C 
specimens tested in bending and tension. 

Sintering temperature Sintering Atmosphere Weibull parameters 
mB = 10.3 ±1.6 B

σ0 = 1123 MPa 
1120°C 100% H2 mT = 11.6 ± 2.6 

σ0 = 658 MPa 

mB = 11.0 ± 1.8 B

σ0 = 1352 MPa 
1250°C 95% N2 - 5% H2 

 mT = 10.1 ± 2.3 
σ0 = 762 MPa 

 

 
Fig.3.Weibull plots for maximum stresses in dogbone specimens sintered at 1120°C in dry 
hydrogen and tested in tension and in bending where j is the rank in a batch of n specimens 
and m the Weibull modulus: 1. σ[T]max, calculated from the experimental data; 2. σ[B]max 

calculated from experimental data; 3. :Vnorm σ[B]max : ”volume normalised” σ[B]max 
evaluated by dividing calculated σ[B]max by 1.68 (given by relation 12) - volume defects.; 
4. Anorm σ[B]max : ”area normalised” σ[B]max evaluated by dividing calculated σ[B]max by 

1.42 (given by relation 13) - surface defects. 
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Fig.4. Weibull plots for maximum stresses in dogbone specimens sintered at 1250°C in 

dry 95% N2-5% H2 atmosphere  and tested in tension and in bending where j is the rank in 
a batch of n specimens and m the Weibull modulus: 1. σ[T]max, calculated from the 
experimental data; 2. σ[B]max calculated from experimental data; 3. :Vnorm σ[B]max : 

”volume normalised” σ[B]max evaluated by dividing calculated σ[B]max by 1.70 (given by 
relation 12) - volume defects; 4. Anorm σ[B]max : ”area normalised” σ[B]max evaluated by 

dividing calculated σ[B]max by 1.44  (given by relation 13) - surface defects. 

NORMALISING TRUE MAXIMUM TENSILE STRESSES IN BENDING TO 
THOSE IN TENSION USING WEIBULL STATISTICS  

Let us thus analyse the case of a material failing by cracking from inherent flaws. 
As these defects have not the same size, shape and orientation, strengths determined on 
identical specimens have a scatter, depending on the distribution of these failure-initiating 
flaws especially their variation in size. This is substantiated by the data presented in 
Tables 1 and 2 and graphically as Figs. 3 and 4. If the material possesses a constant 
resistance to the propagation of these defects (fracture toughness), the problem can be 
treated statistically. The "weakest link" Weibull [6] analysis, adopted almost universally for 
ceramics [2], postulates that the "worst" combination of the size and orientation of the flaw 
and the magnitude of the tensile stress there applied, determines the strength of the 
specimen. 

In a loaded tensile test piece the entire gauge volume is subjected to the same 
(maximum) stress. Only half the three-point bend specimen is subjected to a tensile stress, 
and in that portion the stress varies from maximum at the tensile surface to zero at the 
neutral axis and from the centre to the span extremities, respectively. "Strengths" of bend 
specimens will thus be generally higher than of the tensile specimens, since it is unlikely 
that the worst flaw will be where the maximum stress is applied in a specimen undergoing 
bending.  
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If the distribution of flaws is the same in tensile and bend specimens, as is the case 
when specimens from the same batch are tested either in tension or in bending, and if the 
same type of flaw is responsible for failure in the material, of whatever shape and size, 
simple 2-parameter Weibull analysis should apply [2, 3, 6]. Depending on the scatter, 
quantified by the Weibull modulus, m, and the volumes of the bend and tensile specimens, 
the relationship between the true bend strength, σ[B]max, and the tensile strength, σ[T]max, 
has been shown to be [4] for brittle failures in specimens of the same shape and size: 
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independent of the specimen size, when the gauge length, L, the width, B and 
thickness, T, of the specimen tested in tension equal the span, l, width ,b, and the beam 
depth, t. A relation therefore exists between the σ[B]max  / σ[T]max normalizing factor and m. 
It is plotted in Fig.5. The factor range 1.5-2.0 corresponds to m values in the range 15 to 7; 
for m of 10.9 and 10.5 the normalising factor is 1.68 and 1.70, respectively. It should be 
noted that this “volume defects” relation [whose derivation involves triple integrals] is 
strictly applicable only to an elastically deforming beam [3, 4], but, since plastic strains 
were small, its applicability will be assumed. For failures originating only at the surfaces, 
the corresponding scaling/normalising factor is:  

 
σ[B]max  / σ[T]max ={2L(T+B)(m+1)2/l[t+(m+1)b]}1/m   

={2(T+B)(m+1)2/[T+(m+1)B]}1/m    (13)        
 

This “normalising” factor for surface initiation in the dogbone specimens of L = l 
= 28.6 mm, T = t = 6.2 mm and B = b = 5.7 mm, evaluates to 1.42 and 1.44 for values of m 
of 10.9 and 10.5, respectively.  

The relevant factors were used to replot the σ[B]max data. Weibull plots of 
“normalised σ[B]max  for volume and surface defects are  also presented in Figs. 3 and 4. As 
failures in specimens tested in tension did not originate only in the surface, equation (12) 
should apply to our data. 
 

 
Fig.5.  The Weibull prediction of  σ[B]max  / σ[T]max “normalising” ratio on the degree of 
scatter, characterised by the modulus, m, for specimens of the same size and geometry 

tested in bending and tension. 
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Both the normalised σ[B]max  plots in Figs. 3 and 4 are now in close proximity to the 
σ[T]max Weibull plot, with the volume defects analysis corresponding very closely, especially for 
specimens sintered at 1120°C. The σ[T]max  and “normalised” σ[B]max  parameters were 
evaluated for σ0 and for stresses giving probabilities of survival, Sj, of 50, 75, 90, 95 and 99% 
for both volume and surface failure initiation criteria (Table 5). It seen that the correspondence is 
excellent for volume defects analysis, supporting fractographic evidence of internal failure 
initiation sites in tensile specimens in specimens with both processing histories. 

Tab.4. Stresses in MPa for the same probabilities of survival evaluated from tensile and bend 
tests respectively. 

“Normalised” σ[B]ma and σ[T]max
3-point bend test Tensile test 

Survival Probability 
Sj 

 Volume 
defects 

Surface 
defects 

 

Specimens sintered at 1120°C in H2

0.37 (for σ0) 666 789 659 
0.5 644 763 662 

0.75 595 706 623 
0.9 544 645 581 

0.95 510 605 552 
0.99 441 523 493 

Specimens sintered at 1250°C in 95%N2 5%H2

0.37 (for σ0) 795 942 761 
0.5 769 912 735 

0.75 713 844 676 
0.9 652 773 614 

0.95 612 727 573 
0.99 530 629 491 

CONCLUSIONS 
Two series of sinter-hardened Fe-3% Mn-0.6-0.7% C ISO 2740 specimens were 

tested in tension and in three-point bending, in both cases undergoing plastic deformation 
before failure by cracking. True tensile strength and the maximum tensile stress in bending 
were evaluated from the UTS and TRS values. The results were analysed using Weibull 
statistics and the equal Weibull moduli, m, were in accord with specimens failing by the same 
mode. The absolute values of the stresses in bending, however, were still some 80% higher. 
By considering the stress distribution in a bending specimen, using Weibull statistics, the 
theoretical ratio [dependent on m] between the true maximum stresses in bending and tension 
was evaluated and found to be in close agreement with the experimental data. 
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