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AN ANALYSIS OF SOME FACTORS INFLUENCING 
THE TOUGHNESS OF POROUS SINTERED MATERIALS 

J. R. Moon, A. Molinari 

Abstract 
The toughness of materials can be measured in a number of ways, but all 
are measures of how much of the energy supplied by a load is required to 
bring about fracture. In PM materials it is most often interpreted in terms 
of the fraction of the cross-sectional area available to support a load. A 
question arises about where in the material the energy supplied by the 
applied load is absorbed. This paper describes an attempt to calculate 
one measure of toughness by analysing the elastic energy expended in the 
material as a whole and the plastic deformation energy expended in the 
regions adjacent to sinter necks. Although, of necessity, greatly 
simplified, it demonstrates the relative significance of the elastic and 
plastic contributions to toughness in relation to (a) the relative density of 
the material, (b) the yield and fracture strengths of the matrix material 
and (c) the ductility of the matrix material. 
Keywords: PM materials, toughness, relative density, elastic and plastic 
strain energy 

INTRODUCTION 
In interpreting the toughness of sintered PM materials much emphasis is placed on 

the fraction of the cross-sectional area available to support a load [1-3]. But the work done 
in elastically deforming the material as a whole and in plastically deforming the volumes 
that extend from the plane of a sinter neck into the adjacent particles has received 
comparatively little attention. Intuitively, we would expect that the greater is the deformed 
volume, the greater will be the toughness. Previous considerations based on these thoughts 
suggest that the volumes capable of plastic deformation are determined by the yield and 
fracture stresses of the matrix material [4]. An attempt is made here to calculate 
toughnesses relative to those of fully dense materials, based on analyses of [i] the elastic 
deformation of the material as a whole and [ii] the plastic deformation of the smaller 
volumes close to inter-particle necks and their work hardening characteristics. 

Before looking at the matter in more detail, it is worth considering the nature of 
the stresses and strains experienced by sinter necks, as illustrated in Fig.1. The strains 
resolve into tension and shear components, which, of course, vary from the centre of a neck 
to its surface. To take such complexity into account would be overwhelming and so the 
following calculations are based in a simplified model of a sinter neck under uniform 
tension only. 
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Fig.1. Illustrating the loading and the tension 
and shear components of strains experienced 
by sinter necks. For mechanical equilibrium, 
all forces and moments must add vectorially 

to zero. 

Fig.2. A single sinter neck between two 
spherical particles of identical sizes, subject 

to a uniaxial tension load of F. 

RESULTS AND DISSCUSION 

The volume deformed plastically 
Localised plastic deformation in the region of sinter necks 
At fracture the local stress in a sinter neck under tension is the fracture stress of 

the matrix material, σF. The whole volume deforms elastically by differing amounts 
depending on the local stress. A smaller volume extending into the particles from the neck 
deforms plastically, the limit being at the plane where the local stress reduces to the yield 
stress of the matrix material, σY. The volume plastically deformed in one particle is taken to 
be the same as the volume of the spherical cap cut off by the yield-plane; some of this 
material has been transferred into the sinter neck, but all the material originally in the cap 
has been plastically deformed. 
This volume is; 
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and σR is the local stress at the plane through the centre of the particle. Re-arranging in 
terms of stresses, gives; 
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or, as a fraction of the whole particle; 
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The analysis can be extended to consider the material as a whole. Each particle is 
in contact with several others. Although the local stress system will differ from neck to 
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neck as in Fig.1, we simplify by assuming that each sinter neck makes the same 
contribution, the total volume within one particle that is deformed plastically is given by 
equation 2b multiplied by the co-ordination number. For the material as a whole, we have 
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Where NC is the co-ordination number representative of the particle packing and ρr is the 
relative density of the material. For spheres in the so-called random close packed 
arrangement, NC is generally thought to be about 6 [5,6]. Remembering that in the case of a 
PM part, the particles have been pushed together during compaction, a rather higher 
coordination number is used here; 8 was chosen. 

Density and neck size are not independent quantities. The random close packed 
condition has a relative density of close to 0.644 [7,8]. To estimate when full density is 
attained, consider four overlapping spheres, centred at the corners of a tetrahedron (Fig.3) 
and of a size to meet at the centre of the tetrahedron - that is to reduce the pore size to zero. 
 

  
Fig.3. The geometry of overlapping spheres 

centred at the corners of a tetrahedron. 
Fig.4. Calculated fraction of the whole PM 

material that has yielded as functions of 
relative density and the ratio of true yield to 

true fracture stress of the solid material. 

Geometry gives the relative size of the contact plane when ρr =1; r/R = 0.774. 
From these observations, we have; 
ρr = 0.644+0.45r/R        (4) 

Putting all this together allows calculation of the fraction of the overall material 
that has yielded as functions of the relative density and of the ratio of yield to fracture 
strength of the solid material that has been deformed Fig.4 illustrates. 

What do we mean by toughness? 
Figure 5 gives examples of stress/strain curves for a few, model, fully dense 

materials in uniaxial tension. W/V is the work done on the material per unit volume, the 
strain energy density, until it fractures. Note that material D requires the most work to be 
done to bring it to fracture and that material C illustrates the importance of ductility. 

Figure 6 shows the relationship established by experiment between the strain 
energy density to fracture in tension and the un-notched impact energy for the same PM 
steels. It justifies the adoption of W/V as an indicator of toughness, even though the loading 
conditions are very different. 
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Fig.5. Examples of true-strain / true-stress 

curves for model, fully dense materials. 
Fig.6. Calculated fraction of the whole PM 

material that has yielded as functions of 
relative density and the ratio of true yield to 

true fracture stress of the solid material. 

Stresses and Work 

Plastic 
The work done to plastically deform the material from yielding to an arbitrary 

strain, ε*, when subject to a uniaxial tension load is: 
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with σ & ε being the true stress and true-strain, respectively. 
Many expressions exist to describe the plastic flow of materials. For simplicity, we 

choose a linear work hardening model. 
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σ* varies inside the yielded volume from σF at the sinter neck (where fracture occurs) to σY 
at the boundary between yielded and un-yielded volumes. The easiest approach is to use the 
average stress in the yielded region for σ*. 
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In these expressions, σY and σF refer to the properties of the metal making up the 

particle and the sinter neck, which are assumed to be homogeneous and identical. Table 1 
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gives data for a commonly used, fully solid, heat-treatable low-alloy steel; for purposes of 
calculation here, σF is taken to be 2000MPa. For true-strains to fracture, calculations are 
based on the measured reductions in cross-sectional area at fracture (% elongation is a 
useful measure for comparative purposes, but, in this context is meaningless, being as much 
a function of test-piece geometry as of material; reduction in area to fracture avoids this 
complication) 

Tab.1. Wrought 4340: 0.4C-0.8Cr-1.8Ni-0.25Mo (0.75Mn-0.3Si). Oil quenched from 
845°C. 

Tempering temperature 
[°C] 

Yield 
[MPa] 

UTS 
[MPa] 

Yield/UTS % elong % RA 

205 1860 1980 0.94 11 39 
315 1620 1760 0.92 12 44 
425 1365 1500 0.91 14 48 
540 1160 1240 0.94 17 53 
650 860 1020 0.84 20 60 
705 740 860 0.86 23 63 

Elastic resilience 
The work done per unit volume to deform a solid material elastically to a stress of 

σ  is  
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In this case, the whole particle is deformed. As before, we use the average stress in 
the whole particle. 
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Where σR is the stress acting at the full diameter of the particle and σR = σF (rF/R)2, where R 
is the radius of the particle 
which gives us,  ( )RrFFAV σσ =  and, for the whole particle 
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and for the material as a whole 
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Figures 7 shows the separate contributions to toughness from the plastic and 

elastic deformations. 
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Fig.7a,b. The plastic & elastic strain energy densities to fracture for a porous material as 

functions of the relative density and (a) the ratio of true yield stress to true fracture stress; 
(b) the ductility of the solid material (as measured by reduction in cross-sectional area at 

fracture). 

Not unexpectedly, the lower is the ratio σY/σF and the more ductile is the matrix 
material then the tougher is the overall material. The elastic component dominates when the 
density is low and when σY/σF is higher. This reflects the relative sizes of the volumes 
deformed; plastic deformation is confined to a fraction of a particle which depends on both 
the size of the sinter neck and the properties of the material [σY/σF]; elastic deformation 
involves the whole particle, although, of course, it experiences a range of stresses. 

The analysis can be extended by reference to the relative load bearing area, Φ, as 
identified by Molinari et at [1]. Their experimental measurements of the relationship 
between this quantity and the relative density is illustrated in Fig.8, adapted from their 
paper; note that this relationship holds only in the regime of interconnected pores. 

 

 
Fig.8. The relative load bearing area, Φ, as a function of relative density [adapted from 

Molinari et at (1)]. 

The outcome is in Fig.9, which shows the calculated total toughness (elastic + 
plastic) as functions of relative density and of Φ. Comparison of Fig.9a and 9b 
demonstrates that the two approaches to the interpretation of toughness are compatible with 
one another. 
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Fig.9a,b. The calculated toughness of a porous material as functions of (a) the relative 

density, ρr; (b) the fraction of load bearing area, Φ. 

For comparison, Fig.10, taken and adapted from Molinari et al [1], shows 
toughnesses measured by impact tests as functions of microstructural component, relative 
load bearing area and relative density. 

 

 
Fig.10. Impact energies of PM steels, illustrating the influences of microstructural 

component and of the relative load bearing area [1]. 

CONCLUSIONS 
It has to be accepted that the analysis is capable of improvement. In particular, the 

model is oversimplified, as is the method of assessing both the plastic and elastic strain 
energy densities from an average stress in the appropriate region. To carry out a more 
complete analysis would involve introducing too many adjustable variables to describe 
plastic flow and involve some awkward integrations that have been avoided here. 

Nevertheless, the analysis provides an acceptable interpretation of many 
experimental observations. In particular, it shows, for a given fracture stress at a sinter 
neck, the relative significance of the continuity of the porous material (sinter-neck 
sizes/particle size) and of the properties that define the plasticity of the solid material 
(yield-stress/fracture stress and ductility). The elastic contribution dominates when sinter 
neck sizes are small, when σY/σF of the matrix material is high and when the matrix 
ductility is low. It becomes progressively less dominant when σY/σF is smaller, the sinter 
neck size increases and the ductility of the matrix increases. 
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