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OPTIMIZATION OF MECHANICAL PROPERTIES OF POROUS 
MATERIALS 

S. Firstov, Yu. Podrezov 

ABSTRACT 
Possible ways to improve mechanical property of porous materials, 
depending on volume fraction of pores, are discussed. The first possibility 
is an enhancement of fracture toughness of porous material by increasing 
the volume fraction of pores. The second is the growth of relative stiffness 
of high-porous systems. The third case is to increase the absorbing 
capacity of strain energy at a high porosity. The sensitivity of these effects 
to the morphology of porous space, and structure of solid phase, is 
analysed. The methods of structure optimisation in order to obtain 
maximum effects are proposed. Solid state structure and porous space 
morphology were taken into account. There is a good agreement between 
theoretical calculation and experimental data. Requirements of designers 
will always be met if the morphology of porous structure and mechanical 
property of basis metal is optimal. 
Keywords: porous materials, fracture toughness, relative stiffness, 
structural effect, work hardening, damper stress 

INTRODUCTION 
Pores are one of the structural elements of a material. Porosity can be a result of 

material technology as well as being regulated consciously, for example, when producing 
filtered or low-weight materials. In the first case, one usually tends to get rid of porosity by 
improving material technology or realising special treatments, for example, isostatic hot-
pressing. In the second case, special technologies are worked out for obtaining regulated 
porosity. With this aim, both a simple combination of powder pressing condition or 
sintering modes and a special heat treatment are used in powder metallurgy. Therefore, both 
investigations of porous material structure and the influence on physical-mechanical 
properties of the materials are of considerable interest. 

A number of physical properties (for example, thermal expansion coefficient) do 
not depend on porosity, other properties (for example, density) depend on porosity linearly. 
The mechanical properties of sintered materials are drastically reduced when the porosity 
increases. In particular, the following formulas have been derived in a number of 
publications [1-6] 
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where θ is porosity; σy0 and σ(θ)y are the yield stresses of compact and porous material; σf0 
and σ(θ)f - the same for fracture stresses; d is the grain size; Ky – Hall-Petch coefficient; E0 
and E(θ) are the elastic modulus of compact and porous material; b and m – constant. 

These dependencies agree with the experiment as to the porosity values of θ ≤ 
30%. Some more complicated dependencies of the properties have been proposed for the 
range θ ≤ 60% [3-8], and for high porous materials, the percolation theory equations is 
employed [9]. 

Balshin supposed [1,2] that the dimensionless coefficient 
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where S(θ ) and S0 are the properties of porous and compact bodies which are proportional 
to the “critical” fraction (for example, tensile strength). 

Krasovsky [10] considered, however, that the relation 
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Further improvement of the micromechanical model of fracture of powder 
materials was made by M. Šlesár [11]. He defined new important structural parameters of 
fracture PM materials: plain porosity θx and neck porosity θn. 

There is a somewhat unusual influence of the dimension and shape of the 
specimens (scale factor) on the properties of sintered porous bodies. As it has been shown 
in [12], the strength is reduced if the specimen length increases. But it is slightly enhanced 
with increasing cross-section area.  

It should be noted that the theoretical investigation of the porosity effect on 
properties (with some restrictions imposed in the models used for calculations) can be 
carried out quite correctly. However, experimental investigations face a number of 
additional difficulties. Specifically, using a different variant of treatment technique for 
porous materials, experimenters involuntarily change other structural parameters: grain 
size, state of interfaces, impurity distribution. The structural aspects of the physical 
mechanisms of deformation and fracture of powder materials have been analysed in our 
book with M. Šlesár, Ľ. Parilák et al. [11]. In this book, the problems of structural 
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sensitivity of the yield point of powder materials; strain hardening of powder solids; the 
porosity effect on fracture mechanisms and on other properties; mechanical properties in 
the case of interparticle mechanisms of fracture were also studied. Those points were 
developed in our last works [14-17]. 

Practical application of high-porous materials as an element of construction is 
more really in the cases when the mechanical behaviour of porous materials improves with 
a rise of porosity. We have tried to find the ways to improve mechanical properties of 
porous materials. Some possible cases will be discussed in this article. The sensitivity 
strengthening effect on the structure of porous space and solid phase will be analysed, and 
structural optimisation of high porous material will be proposed in the context of our 
previous results. 

FRACTURE TOUGHNESS OF POWDER MATERIALS UNDER BRITTLE - 
DUCTILE TRANSITION TEMPERATURE 

The first example is fracture toughness increasing in porous materials at a brittle-
ductile transition (BDT) temperature. This effect was demonstrated on the sintering powder 
iron testing at 77 K in [13]. Figure 1 displays the fracture toughness alteration with porosity 
in powder iron materials, with various porosity and impurities. In all cases, the maximum 
value of fracture toughness is revealed at critical porosity θcr, which is characterised by a 
transition of fracture mechanism from cleavage under low porosity, to ductile under higher 
porosity. 

 

 
Fig.1. Dependence of fracture toughness K1C and portion of tough fracture mode λ on 
porosity θ for sintered iron powder 

According to this data, the brittle-ductile model for BCC-powder materials with 
various porosity and impurities was proposed in [18]. Transition from brittle to ductile 
fracture occurs at the critical porosity θcr, which is determined from the condition of 
equality of fracture toughness for both brittle and ductile mechanisms. 
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For cleavage fracture mechanism, the dependence of fracture toughness on 
porosity may be given in the form 
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σсl0 is microcleavage stress of compact materials which is determined under BDT 
temperature (Tx) from the relation σсl0 = σy0 (Тх). 

For a ductile fracture the Hahn-Rosenfield relation [19] was used, taking into 
account the dependence of mechanical properties on porosity 
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where n is the strengthening exponent; E is the elastic modulus; εr is the critical 
deformation. 

K1c - θ - T topogram was calculated from this equation. Theoretical curves K1c vs. 
θ for 77 K, 123 K and 293 K are in a good agreement with experimental data.  

Variation of fracture toughness with porosity depends on the material structure and 
test temperature. In terms of our model presented in [18], the form of curves K1c vs. θ can 
be predicted from the relation for σcl0 and σy0 of initial nonporous material. Experimental 
data show that, under BDT condition σcl0 = σy, different BCC materials demonstrate a 
nonmonotonous K1c vs. θ dependence similar to the curves in Fig.2. 

 

 
Fig.2. Fracture toughness as a function of porosity θ and temperature Τ for iron-based 
powder material (Fe - 0.6% C), characterised by microcleavage stress σcl = 650 MPa. 

Thus, investigation of mechanical behaviour of various materials under an 
isomechanical condition, allow general regularities of material structure effect on fracture 
processes and K1c formation to be established. This effect was employed to increase fracture 
toughness of cold resistance steels and to improve fracture resistance of chromium, 
molybdenum and tungsten powder alloys [20], which reveal BDT near room temperature. 
Ľ. Parilák et al. [13] found the same strengthening effect of porosity on BDT under an 
impact toughness test in iron. 
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INCREASING OF FRACTURE TOUGHNESS OF BRITTEL MATERIALS 
CONNECTING WITH BLUTTING OF CRACK 

S. Firstov and A. Vasilev [21] showed that, in contrast to the generally accepted 
facts of negative influence of pores on the fracture toughness, the toughening effect for 
brittle powder materials can exist. In investigations on glass [22], a maximum of K1c vs. 
porosity curve has been obtained. The maximum has corresponded to the similar porosity 
interval. A formula for the dependence K1c vs. porosity in this case 

wm
cc KK )1/(1)1()( 0011 −+−= ρρθθ π , 
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where K1c0 - fracture toughness of the compact material, ρπ – blunted crack tip radius, ρ0 - 
atomic sharp crack tip radius, w – probability that crack tip has a blunting of the order d, w 
≅(θ/θK)2m when 0<θ<θK, w = 1 when θ>θK and θK – critical porosity value. The calculated 
dependencies of K1c/K1c0 vs. porosity at different values of ρπ/ρ0 ratio are shown in Fig.3. 

 
Fig.3. The predicted dependence of fracture toughness of porous body, with different 
ratios between pores radii and sharpness of notch tips, on porosity for cleavage and 
intergranular fracture mechanisms. W is the probability of the entry of the notch tip into 
pores space. 

Figure 3 shows the predicted dependence of fracture toughness on porosity for 
different values of the radius of fracture initiating notch ρπ. It is seen that the probability of 
the full blunting of the notch tip by pores takes place at a porosity content higher than 20%. 
In increases from 0 to 1, porosity increase from 10 to 20%, is in a full accordance with the 
experimental results [22]. It is also seen that by increasing the notch radius, even up to 10 
times, i.e. to 5-7 micrometers, the fracture toughness of a brittle material increases nearly 
twice.  

Such fracture mechanisms result in a nonlinear loading diagram. In [23] we tried 
to solve a physical problem of the description of non-elastic behaviour of ceramic as a 
stochastic process of the cracking of separate structural elements. The dependence of the 
normalised stress on the normalised strain is shown in Fig.4. 

There are four stages of process. The first stage is loading without microcracking. 
The second stage is a stable, non-localised microcracking before the stress maximum. The 
third stage is a stable localised microcracking after the stress maximum. The fourth stage is 
an unstable (catastrophic) fracture. In fact, the third and fourth stages are during a very 
short time as a result of fracture localisation. Hence, these stages are invisible in practice. 
The stages of stable non-localised microcracking and stable localised microcracking, are 
before the strain energy density maximum. The stage of unstable (catastrophic) fracture is 
after the maximum in Fig.4. There are some features of the microcracking process under 
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bending the compacts, or a low porous ceramic. The third state is absent in this case. The 
second stage of scattered microcracking is up to the stage of catastrophic fracture. 

 

 
Fig.4. Schematic illustration of the dependence of the normalised stress on the 
normalised strain for porous material: 1 - loading without microcracking; 2 - stable 
nonlocalised microcracking stage; 3 - stable localised microcracking stage; 4 - unstable 
(catastrophic) fracture stage. 

In contrast, in the case of high porous ceramic, all above-mentioned states are 
observed clearly. The true load-deflection diagram of porous (39%) alumina was 
investigated in [24] and is presented in Fig.5. This diagram is in good agreement with the 
schematic illustration (Fig.4). The deformational process of comparatively brittle ceramics 
is the process of crack accumulation in its structure caused by an increase in the length of 
cracks as well as their number. This process requires an additional energy and it is 
additional dissipation of elastic strain energy. 

 

 
Fig.5. “Load – deflection” curve for porous alumina (θ = 38%) 

Within the framework of the model described in [23], the modelling of the 
mechanical behaviour of porous ceramics may be conducted. Both the structural parameters 
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(grain size) and statistic distribution of pores are used as initial data for further calculation. 
This modelling process makes it easier to determine the dependence of the number of 
cracks per unit area on the level of stresses applied. The volume of the fractured structure 
elements, or the density of microcracks, can be expressed by the product of the number of 
cracks or fractured structure elements in the volume unit, and mathematical expectation of 
the volume of the fracture structure element. 

Practical application of the results of increasing fracture toughness of porous 
materials has some restrictions because of the relatively low weight effect. Other examples 
have not such limitations. High porous materials have an essential advantage in wide 
porosity interval when the construction weight is the main parameter, and its sizes can vary.  

RELATIVE STIFFNESS OF HIGHPOROUS MATERIALS 
In [16,17,25] the effect of the porous space structure on the relative stiffness of 

high-porous powder materials was analysed. The most simple and cheap way of obtaining 
high-porous materials by means of powder metallurgy methods, is pressing and sintering of 
basic powder with pore-forming powder. The distinguishing feature of the pore space 
structure of the given class of materials, is that the system of large pores is matrical, and 
that of the small pores located between the powder particles is statistical. Ideal matrisity is 
achieved when the size of the pore-forming particles is many times larger than that of the 
powder particles. 

Quantitative evaluation of the effect of structural factors on several relative 
mechanical parameters was made on the basis of experimental data and phenomenological 
analysis. The influence of structural parameters on relative properties of highporous powder 
and compact materials was obtained in analytical form.  

Parameter kkm is the relative stiffness for the same weight 
3
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where k0 is stiffness of compact material and kθ is stiffness of porous material. Parameter 
kym is the gain in yield load for the same weight 
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where Py is yield load of porous materials; P0 - yield load of solid phase. According to 
percolation theory [17], parameter Eθ/E0 may be given in the form 

β

θ
θθ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

c

EE 1)( 0
, (11) 

where θc is the porosity of the percolation threshold when effective modulus becomes zero; 
β is the critical exponent that can be theoretically predicted for various physical properties 
[9]. 

The influence of the ratio of the pore forming material and powder particle sizes, 
m, and the volume fraction of pores, θ, on relative stiffness in pore-forming powder 
materials is shown in Fig.6. 

The relative stiffness maximum (kkm = 6) is observed in the optimal structural state 
(for biporous nickel whose structural parameters are θ = 70% and m = 50). It means that, 
under equal loads, such a porous beam has one-sixth as large deflection as a compact beam 
that has the same weight. Or under condition of equal deflection, the porous beam has load 
six times as much as that of the compact beam, the effect for other biporous materials is 
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lesser. It is important that the powder materials without pore forming do not show the 
increase of relative stiffness. 

 

 
Fig.6. Dependence of relative stiffness kkm on porosity θ 

MAXIMUM ENERGY ABSORPTION CRITERION 
Another example is connected with the unique ability of high porous materials to 

absorb deformation energy under a small damping stress. Such materials have priority in 
protective constructions. The absorption energy depends strongly on the apparent porosity. 
If the porosity is too high, the form crushes before impact energy is sufficiently absorbed. If 
the porosity is too low, the stress in the form exceeds given critical value at low absorbed 
energy. The example of compressive stress-strain curves (θ-ε) of foamed aluminium for 
different densities is shown in Fig.7. Vertical lines on the scheme (Fig.8) correspond to 
bounds between the stages of easy and strong deformation strengthening. Structural 
optimisation of high porous material allows reaching the maximum value of work 
hardening. From this point of view, it is necessary to know the rule of the strengthening of 
based metals, the influence of porosity on the stress-strain curve and on the deformation 
degree at the end of the easy deformation stage (Fig.8). 

According to [27], damper efficiency is determined by the ratio of real energy of 
plastic deformation and the maximal one under a given degree of deformation and stress.  

LF

Fd

max

l

0
∫

=φ
l

, (12) 

where F is the alternating load, l is the alternating displacement, Fmax is the maximal load 
and L is the maximal displacement according to compressive curve. The high porous 
materials have maximal efficiency at the easy deformation stage. According to 
experimental data and theoretical investigation [28], stress vs. strain dependence in this 
stage may be expressed as a linear function. Taking into account this fact and Eq.12, the 
deformation degree at the end of the easy deformation stage can be determined as point on 
the stress-strain curve for which inequality d2σ/dε2>0 is satisfied. 
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Fig.7. Stress-strain dependence of foam 
aluminium at different porosity θ under 
compression: 1 - θ = 0.74; 2 - θ = 0.84; 3 
- θ = 0.89 

Fig.8. Stress-strain dependence of high-
porous material under compression 

Ashby and Gibson [28] proposed a cubic form of unit cell for high porous 
materials. An elastic bending of the walls takes place at the first stage of deformation. At 
the second stage, plastic bending of the walls occurs up to the moment when opposite walls 
touch one to another. The walls crush, and collapse comes about in the third stage. 
According to this deformation model, there is no lateral spreading on the second stage, so 
the value of porosity in deformed material and the true compressive deformation degree is 
connected by simple relation: 

ε
θ θ

θ
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−

−
0

1
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where ε is the true compressive deformation degree, θ0 and θ are the initial and current 
value of porosity under compression respectively.  

The influence of the initial porosity on the deformation degree, which corresponds 
to the end of the easy deformation stage of the deformation curve, can be obtained from 
analysis of evolution of the unit cell under deformation. Since the three-dimensional variant 
of the unit cells deformation is very difficult for geometrical construction in [29], we use a 
more simple two-dimensional cell, which has double the size of lateral walls. Doubling the 
walls is a possibility to take into account all lateral walls bending in a cubic cell. If H is the 
height of cell, and h/2 is the thickness of walls, the initial porosity can then be written as 
follows: 

H
h310 −=θ , (14) 

Unit cell changes its form after deformation. The deformation in the contact 
moment is 

H
HH ′−

=′ε , (15) 
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where H′ - height of cell at this moment. Geometrical construction shows that H′ is 
connected with geometrical parameters H and h of unit cell by relation 

)2(3 hHhH −=′ . (16) 

From Eqs.14, 15 and 16 the influence of initial porosity on the deformation 
degrees at the end of easy deformation stage can be obtained in the form: 

3
)5)(1(1ε 00 θθ +−

−=′ . 
(17) 

The experimental values of ε′ parameter for foamed aluminium and high porous 
powder nickel as function of θ0 are shown in Fig.9. The Eq.17 is in good agreement with 
experimental data.  

 
Fig.9. Dependence of strain, corresponding to transition from the second to the third 
strain stage, on porosity: 1 - calculation according to Eq.3; 2 - experimental data for foam 
aluminium; 3 - experimental data for high-porous nickel 

In [13] we proposed a method to analyse strain hardening curves, allowing for 
features of deformation behaviour connected with both structure evolution of the solid 
phase, and porosity alteration, in the deformation process. When investigating strain 
hardening of porous material in connection with structure transformation in the deformation 
process, it is necessary to take into account two interrelated processes: the evolution of 
dislocation structure of the solid phase, and porous structure alteration. 

The contribution of solid phase structure is characterised by its deformation stress 
σ0

sph
. This characteristic, like true deformation stress of compact material, can be used for 

investigation of the physical parameters of strain hardening. The dependence σ0
sph - e has 

the stage character, the micromechanisms of strain hardening of the materials being 
invariable within the studied porosity interval. According to [30], porosity contribution to 
strain hardening of powder material is taken into account by the parameter E(θ)/E0. This 
parameter is sensitive to pore structure evolution. The dependence E(θ)/E0 = f(ε) of 
materials studied under conditions of uniaxial tension and compression, has a 
nonmonotonous character which is explained by the appearance of a lateral mode of 
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discompaction under tension, and by the accelerated growth of contact area at the transition 
of open porosity to the closed one under compression. 

The strain hardening curves of foamed materials has linear hardening at the second 
stage of deformation that can be calculated from the equation 

000 /)()( EENy θεσσ += , (18) 

where σy0 is the yield point and N0 is the strain strengthening coefficient of the cell wall 
material. According to percolation theory [9], parameter E(θ)/E0 may be given in the form 
of Eq.11. 

Taking into account Eqs.11, 18, the density of deformation energy on easy 
deformation stage may be calculated from the equation: 
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where ε′ is determined from Eq.17. Parameters θc, θ0 and β characterise sensitivity of 
absorbed energy to porous space morphology; on the other hand, σy0 and N are determined 
by microstructure of solid state material. Since Eq.19 is useful for structural optimisation of 
high porous materials in order to determine maximum absorbed energy value. 

As an example we determine the optimal porosity of formed aluminium and high 
porous powder nickel. The parameters for foamed aluminium are: 

 cθ 1≈ , β ≈ 1.73, E0 = 7.3 GPa, 0yσ  = 100 МPа, N0 = 270 МPа;  
for high porous powder nickel according to [29], the values of parameters are:  

cθ  = 0.83, β ≈ 1.16, E0 = 20.4 GPa, 0yσ  = 210 МPа, N0 = 2080 МPа. 
Substitution of these parameters in Eq.19 gives dependence of deformation energy on the 
initial porosity (or density) of the foamed aluminium and high porous powder nickel 
(Fig.10). The maximum value of deformation energy was calculated from Eq.19 for foamed 
aluminium as A = 4.08 MJ/m3 for θ0 = 0.71 and for high porous powder nickel as A = 13.5 
MJ/m3 for θ0 = 0.68. The optimal structural state of high porous materials may also be 
obtained from condition 0

θ
A

0

=
∂
∂ .  

 

 
Fig.10. Dependence of plastic strain energy on porosity (or density) under compression: 

1 – foam aluminium; 2 – high-porous nickel 
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If the demanded value of absorbed energy in the protective construction is 
determined by the designer from special experiments, Eq.19 may be used for a choice of 
optimal porous morphology (by varying of θ, θ0 and β) or microstructure of the solid state 
(by varying σy0 and N0) of high porous materials. When impact energy absorption is 
considered, the stress that is attained in the foam is very important.  

CRITERION OF MINIMAL STRESS UNDER DAMPER PROCESS 
The criterion of a minimal stress σmin under given deformation energy was 

proposed in [31]. Structural sensitivity of this parameter is shown in Fig.8. The shaded 
areas correspond to given deformation energy. The stress attained in the foam depends 
strongly on the initial porosity. It was shown in [31] that minimal stress is attained in high 
porous materials even in the third stage of deformation (Fig.8). 

In this case, structural analysis is necessary to know structural sensitivity of the 
stress-strain curves of high porous materials in the last linear stage of deformation. Since in 
the third stage a crush and collapse of the walls takes place, the deformation process is 
accompanied with lateral spreading and the modulus increasing. In this case, the profile of 
strain hardening curves has a more complicated character, which is determined by strain 
hardening curves of the solid phase, porous structure evolution under uniaxial compression, 
and modulus sensitivity to porosity and its evolution under uniaxial compression. 
Calculation of nominal deformation stress was executed in [30], with an allowance for 
sample forming under compression, porosity alteration, and stress redistribution in the bulk 
of material due to alteration of the pore shape: 
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where σn is the nominal stress, ε and Δθ are relative deformation and porosity alteration 
corresponding; P is the load under deformation ε, S0 is the initial area of sample. 

The experimental dependencies ( )εθ fEE =0)(  for porous iron and foam 
alumina were represented in [30,32]. Elastic stiffness modulus rises steeply when single 
cell walls start to contact one another. Unfortunately, the stochastic character of crushing 
process in different points of material creates difficulties for physical interpretation of 

( )εθ fEE =0)(  dependencies. Anisotropic evolution of the porous space under 
deformation excludes the possibility to obtain correct strain hardening curves by porous 
changing. Such a correction gives us a higher value of nominal stress then obtained in the 
experiments. In [15,33] we propose for a correction of strain hardening curves on the third 
deformation stage to create a new parameter θef called effective porosity. This parameter is 
calculated from equation: 
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Taking into account this correction, a nominal stress on the third stage of 
compressive deformation can be obtained from Eqs.11 and 18 in the form: 
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For structural optimisation of high porous material according to the minimal stress 
criteria, it is necessary to solve the equation for deformation energy (Eq.19) and the 
equations for strain hardening (Eqs.11, 18 and 22) simultaneously. As an example of such a 
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solution, the dependencies )( 0min θσ f=  for different values of deformation energy are 
shown in Fig.11a for foamed aluminium, and in Fig.11b for high porous powder nickel. All 
dependencies have a minimum of stress value under optimal initial porosity. If the absorbed 
energy increases, the minimal deformation stress increases too, but the optimal initial 
porosity is less. 

 

 
Fig.11. Dependence of maximum damper stress on initial porosity for constant total 
absorbed strain work under compression: а) foam aluminium; b) biporous nickel 

CONCLUSION 
In contrast to generally accepted facts of negative influence of pores on strength, 

there are some cases when mechanical properties increase with a rise of porosity: 
• an enhancement of fracture toughness of porous material with an increasing of volume 

fraction of pores. Depending on fracture mechanisms, this effect can be observed in 
10-25% of porosity; 

• the growth of relative stiffness of high-porous systems (at 60-80 % porosity);  
• the third case is to increase absorbing capacity of strain energy at high porosity.  

The proposed model allows choosing the optimal structure of porous material, 
taking into account properties of solid phase, and morphology of porous space.  
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